Bundle Print & eBook
40% off
US$300.00
US$180.00

Print - Hardcover
30% off
In Stock
US$150.00
US$105.00

eBook
30% off
US$150.00
US$105.00

DRM-free (EPub, PDF, Mobi) 🔄
VitalSource 🔄
eBook format help (https://service.elsevier.com/app/answers/detail/a_id/1122/c/10535/supporthub/ecommerce/)

Add to Cart

Institutional Subscription

Request a Sales Quote

Tax Exempt Orders
Support Center (https://service.elsevier.com/app/answers/detail/a_id/9053/supporthub/ecommerce)
Description

Atlas of Mycobacterium Tuberculosis reveals in-depth information about mycobacterium tuberculosis which has never before been reported. Using atomic force microscopy (AFM), the in-depth phenotypic interaction that occurs in different stages of the tuberculosis lifecycle is illustrated, including resting, exponential, and dormant states.
Coverage also includes the macroscopic and microscopic anatomy of mycobacterium, including pigmentation, morphology of colonies, size and shape, and the phenotypic changes from susceptible to resistant, all shown with images from electronic and atomic force microscopes. View more >

Key Features
- Identifies the different stages and morphological aspects of mycobacterium tuberculosis with the use of new microscopy techniques
- Includes never-before-seen photographs from the personal collection and scientific achievement of the authors
- Outlines the nature of the lifecycle of mycobacterium tuberculosis in relation to adaptation in humans

Readership
Researchers of Tuberculosis (TB) including MDs, PhDs and postdoctoral fellows

Table of Contents
- Dedication
- Preface
- Acknowledgments
- Chapter 1. The Species Concept
 - Classification of Mycobacterium
 - Mycobacterium tuberculosis Complex
- Chapter 2. Microscopic Anatomy of Mycobacterium tuberculosis
- Chapter 3. Diversity in Cell Shape of Mycobacterium tuberculosis
- Chapter 4. Cell Division in Mycobacterium tuberculosis
Details

No. of pages: 226
Language: English
Copyright: © Academic Press 2017
Published: 14th October 2016
Imprint: Academic Press
eBook ISBN: 9780128038802
Hardcover ISBN: 9780128038086

About the Author

Ali Akbar Velayati

Dr. Velayati is the Director of National Research Institute of Tuberculosis and Lung Diseases (NRITLD) at the Shahid Beheshti University of Medical Sciences. He is full professor of Pediatric infectious Disease which has guided more than 200 M.D and PhD students. His previous books on Tuberculosis (Persian-language) has been
awarded at national academy of medical sciences. He is head of Mycobacteriology Research Center in NRITLD, where directly monitor the basic and clinical trial on tuberculosis, Dr. Velayati is president of Asian African Society of Mycobacteriology and Chief Editor of International journal of Mycobacteriology.

He has published the majority of work in the Medicine area (64%) and holds a 1.0 FWCI in that area. 2.7 is the average number of citations per publication authored by Dr. Velayati.

Affiliations and Expertise

Mycobacteriology Research Center, Director of the National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

Parissa Farnia

Dr. Farnia has special expertise in Mycobacteriology. She has published the majority of her work in the Medicine area (58%) and holds a 1.0 FWCI in that category. She holds an average number of 3.2 citations per publication. She has published multiple times in journals including the International Journal of Clinical and Experimental Biology; the International Journal of Mycobacteriology; and the International Journal of Tuberculosis and Lung Disease.

View more >

Affiliations and Expertise
Director, Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Science, WHO Collaborating Centre, Masih Daneshvari Hospital, Iran

Ratings and Reviews

⭐⭐⭐⭐⭐

Be the first to write a review

Solutions

Researchers

About Elsevier

How can we help?

Select location/language
Nontuberculous Mycobacteria (NTM)
Microbiological, Clinical and Geographical Distribution

Edited by
Ali Akbar Velayati and Parasaa Farnia
Nontuberculous Mycobacteria (NTM)

1st Edition

Microbiological, Clinical and Geographical Distribution

Write a review

Editors: Ali Akbar Velayati, Parissa Farnia

Paperback ISBN: 9780128146927

Imprint: Academic Press

Published Date: 1st January 2019

Page Count: 328

Select country/region:

United States of America

Sales tax will be calculated at check-out
Nontuberculous Mycobacterium (NTM)
Nontuberculous Mycobacterium (NTM)
Microbiological, Clinical, and Geographical Distribution

Edited by
Ali Akbar Velayati
Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

Parissa Farnia
Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
Contents

List of Contributors xi
Preface xlii

1. The Taxonomy of the Genus Mycobacterium 1
 Enrico Tortoli

 References 9

2. Identification of Nontuberculosis Mycobacterium:
 Conventional Versus Rapid Molecular Tests 11
 Ali Akbar Velayati, Parissa Farnia and Shima Saif

 Species Concept in Mycobacterium 11
 Classification of Mycobacterium 12
 Laboratory Procedures for Mycobacterium Identification 18
 Primary Steps in Identification of Mycobacterium 20
 Photo Induction Procedure 21
 Niacin Test 22
 Materials 22
 Preparation 22
 Classical Procedure 23
 Reading 23
 Paper Strip Procedure 23
 Reading 23
 Nitrate Reduction Test 24
 Materials 24
 Preparation 24
 Procedure 25
 Results 25
 Nitrite Test Strips for Detection of Nitrate Reduction 25
 Reading 25
 Catalase Test 25
 Materials 26
 Preparation 27
 Procedure 27
 Results 27
 Semiquantitative Catalase Test
 Results 27
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiophen-2-Carboxylic Acid Hydrazide</td>
</tr>
<tr>
<td>Susceptibility Test</td>
</tr>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Preparation</td>
</tr>
<tr>
<td>Procedure</td>
</tr>
<tr>
<td>Reading</td>
</tr>
<tr>
<td>Tween Hydrolysis Test</td>
</tr>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Preparation</td>
</tr>
<tr>
<td>Substrate Medium</td>
</tr>
<tr>
<td>Procedure</td>
</tr>
<tr>
<td>Reading</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Urease Test</td>
</tr>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Preparation</td>
</tr>
<tr>
<td>Procedure</td>
</tr>
<tr>
<td>Results</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>Three- and Fourteen-Day Arylsulfatase Test</td>
</tr>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Preparation</td>
</tr>
<tr>
<td>Reading</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Oxygen Preference Test</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Detection of Pyrazinamidase Activity</td>
</tr>
<tr>
<td>Procedure</td>
</tr>
<tr>
<td>Reading</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Disinfection of Nontuberculous Mycobacteria in Laboratory</td>
</tr>
<tr>
<td>Disinfectants</td>
</tr>
<tr>
<td>Cleaning Bench Surface</td>
</tr>
<tr>
<td>Molecular Procedures for Identification of Mycobacterium</td>
</tr>
<tr>
<td>Stock Solution and Buffers</td>
</tr>
<tr>
<td>Genomic DNA Extraction From Mycobacterial Culture</td>
</tr>
<tr>
<td>Extraction of Mycobacterial DNA From Paraffin-Embedded Tissue</td>
</tr>
<tr>
<td>Extraction of Mycobacterial DNA From Clinical Specimens (Sputum and Others)</td>
</tr>
<tr>
<td>Primer Preparation</td>
</tr>
<tr>
<td>Example of Primer Stock Solution Preparation</td>
</tr>
<tr>
<td>Rapid Identification Procedures for Nontuberculous Mycobacteria</td>
</tr>
<tr>
<td>Identification</td>
</tr>
<tr>
<td>Polymerase Chain Reaction Mixture for 50 µL Reaction</td>
</tr>
<tr>
<td>Polymerase Chain Reaction Product</td>
</tr>
<tr>
<td>hsp65 Restriction Analysis</td>
</tr>
<tr>
<td>Evaluation of Restriction Patterns</td>
</tr>
</tbody>
</table>
Identification Using 16S–23S rRNA Primer 52
Polymerase Chain Reaction Mixture for 50 μL Reaction 53
Restriction Analysis 54
References 55
Further Reading 59

3. Susceptibility Testing of Nontuberculous Mycobacteria 61

Imran Ahmed, Rumina Hasan and Sadia Shakoor

Determination of Clinical Significance 63
Mechanisms of Resistance 63
Phenotypic Drug Susceptibility Testing for Nontuberculous Mycobacteria 64
Methods for Susceptibility Testing of Rapidly Growing Mycobacteria 64
Methods for Susceptibility Testing of Slow Growing Mycobacteria 65
Susceptibility Interpretive Criteria (Breakpoints) 66
Rapid Phenotypic Drug Susceptibility Testing for Nontuberculous Mycobacteria 70

Genotypic Drug Susceptibility Testing for Nontuberculous Mycobacteria 70
Treatment of Nontuberculous Mycobacteria Infections 70
Antimicrobial Treatment for M. chelonae Pulmonary Disease 78
Antimicrobial Treatment for M. fortuitum Pulmonary Disease 78
Antimicrobial Treatment for M. malmoense Pulmonary Disease 78
Antimicrobial Treatment of M. xenopi Pulmonary Disease 78
Antimicrobial Treatment of M. simiae Pulmonary Disease 79
Treatment of M. terrae Complex Infections 79
Treatment of M. szulgai Infections 79
Treatment of M. hemophilum Infections 79
Treatment of M. marinum Infections 79
Treatment of M. ulcerans Infections 80
Conclusion 80
References 80

4. Future Nontuberculous Mycobacteria DST and Therapeutic Interventions 85

Sven Hoffner and Diane Ordway

Current Challenges of Drug Susceptibility Testing 85
The Role of Testing Drug Combination Therapy 86
Future Therapeutic Approaches 89
Synergistic Treatment Regimens 90
Potential New Treatments 92
Inhalation Treatment Regimens 93
Intermittent Treatment Regimens 94
Therapeutic Vaccine Approaches 94
Contents

Summary 97
References 97

5. Nontuberculous Mycobacterial Diseases in Humans 101
 Lars-Olof Larsson, Rutger Bennet, Margareta Eriksson, Bodil Jonsson and Malin Ridell
 Etiological Agents 101
 Epidemiology and Transmission 102
 Pathogenesis and Immunity 103
 Predisposing Factors for Nontuberculous Mycobacteria Diseases 104
 Bacteriological Diagnosis 105
 Clinical Diagnosis and Presentation of Nontuberculous Mycobacteria Disease in Children 106
 Clinical Diagnosis and Presentation of Nontuberculous Mycobacteria Disease in Adults 108
 Therapy for Nontuberculous Mycobacteria Infections in Children 110
 Therapy for Nontuberculous Mycobacteria Infections in Adults 111
 Prognosis 113
 Conclusions 114
 References 114

6. Nontuberculous Mycobacterial Lung Disease 121
 Ruxana T. Sadikot
 Introduction 121
 Clinical Manifestations of Nontuberculous Mycobacteria Lung Disease 122
 Chronic Obstructive Airways Disease, Bronchiectasis, and Nontuberculous Mycobacteria 123
 Nontuberculous Mycobacteria in Patients With Cystic Fibrosis 124
 Nontuberculous Mycobacteria in Immunocompromised Patients 125
 Summary and Conclusions 130
 References 130

7. Clinical Presentation of Nontuberculous Mycobacteria Using Radiological and CT Scan Imagining 133
 Payam Mehrian, Poopak Farnia, Jafar Aghajani, Mehrdad Bakshayesh Karam, Jalaledin Ghanavi, Hamidreza Jamaati, Payam Tabarsi and Ali Akbar Velayati
 Introduction 133
 Imaging in Nontuberculous Mycobacteria Group 135
 Lung Infection With Common Rapidly Growing Mycobacteria 136
 Lung Infection With Common Slow Growing Mycobacteria 138
 Conclusion 149
 References 150
 Further Reading 154
8. Mapping the Footprints of Nontuberculous Mycobacteria: A Diagnostic Dilemma

Mandira Varma-Basil and Mridula Bose

Introduction 155
Potentially Pathogenic Nontuberculous Mycobacteria 156
Potential Sources of Nontuberculous Mycobacterial Infection 158
Transmission of Nontuberculous Mycobacteria 159
Predisposing Conditions 160
Clinical Manifestations of Nontuberculous Mycobacterial Infection 163
Microbiological Diagnosis of Nontuberculous Mycobacterial Disease 167
Specimen Collection and Processing 167
Smear Microscopy and Culture 169
Identification 170
Phenotypic Identification 170
Molecular Methods of Identification 171
Conclusions 171
References 171

9. Nosocomial and Healthcare-Associated NTM Infections and Their Control

Sadia Shakoor, Maria Owais, Rumina Hasan and Seema Irfan

Epidemiology of Healthcare-Associated Nontuberculous Mycobacterial Infections 178
Challenges of Identifying and Reporting Healthcare-Associated Nontuberculous Mycobacterial Infections and Outbreaks 183
Preventive and Control Measures 184
References 187

10. Epidemiological Distribution of Nontuberculous Mycobacteria Using Geographical Information System

Jafar Aghajani, Parissa Farnia, Esmaeel Rajaei, Saman Ayoubi, Poopak Farnia, Jalaledin Ghanavi and Ali Akbar Velayati

Introduction 191
Geographical Information System on Clinical and Environmental Isolates of Nontuberculous Mycobacteria 193
References 312

Index 323
List of Contributors

Jafar Aghajani Mycobacteriology Research Centre (MRC), National Research
Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti
University of Medical Sciences, Tehran, Iran

Imran Ahmed Aga Khan University, Karachi, Pakistan

Saman Ayoubi Mycobacteriology Research Centre (MRC), National Research
Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti
University of Medical Sciences, Tehran, Iran

Rutger Bennet Astrid Lindgren Children’s Hospital, Karolinska University Hospital,
Stockholm, Sweden

Mridula Bose Department of Microbiology, Vallabhbhai Patel Chest Institute,
University of Delhi, Delhi, India

Margareta Eriksson Astrid Lindgren Children’s Hospital, Karolinska University
Hospital, Stockholm, Sweden

Parissa Farnia Mycobacteriology Research Centre (MRC), National Research
Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti
University of Medical Sciences, Tehran, Iran

Poopak Farnia Department of Biotechnology, School of Advanced Technology in
Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Jalaledin Ghanavi Mycobacteriology Research Centre (MRC), National Research
Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti
University of Medical Sciences, Tehran, Iran

Rumina Hasan Department of Pathology & Laboratory Medicine, Aga Khan
University, Karachi, Pakistan

Sven Hoffner Department of Public Health Sciences, Karolinska Institute,
Stockholm, Sweden

Seema Irfan Department of Pathology & Laboratory Medicine, Aga Khan
University, Karachi, Pakistan

Hamidreza Jamaati Chronic Respiratory Diseases Research Center, National
Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid
Beheshti University of Medical Sciences, Tehran, Iran

Bodil Jönsson Department of Infectious Medicine, Institute of Biomedicine,
University of Gothenburg, Gothenburg, Sweden
xii List of Contributors

Mehrdad Bakshayesh Karam Pediatric Respiratory Diseases Research Centre (PRDRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

Lars-Olof Larsson Division of Respiratory Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden

Payam Mehrian Pediatric Respiratory Diseases Research Centre (PRDRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

Diane Ordway Mycobacteria Research Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States

Maria Owais Ziauddin Medical University, Karachi, Pakistan

Esmaeel Rajaei Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

Malin Ridell Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden

Ruxana T. Sadikot Section of Pulmonary, Critical Care Medicine, Emory University, Atlanta, GA, United States

Shima Saif Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

Sadia Shakoor Department of Pathology & Laboratory Medicine, Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan

Payam Tabarsi Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

Enrico Tortoli Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy

Mandira Varma-Basli Department of Microbiology, Vallabh bhai Patel Chest Institute, University of Delhi, Delhi, India

Ali Akbar Velayati Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
Preface

There has been a recent dramatic interest in the incidence of pulmonary non-tuberculous Mycobacteria (NTM). Twenty years ago, NTM were regarded as nonvirulent bacteria that were not appreciated widely as human pathogens. Today, they are considered to be in every environmental factor, that is, soil, water, and air. Recently, it was shown that NTM can cause diseases from various environmental conditions rather than from person-to-person "in very rare exceptional cases." Ernest Runyon (1959) put these human disease-associated Mycobacteria into four main groups. The number of identified and cataloged NTM species has been increasing rapidly, from about 50 in 1997 to over 160 by January, 2016. The surge is mainly due to improved isolation and identification techniques. However, even with these new techniques, the Runyon classification is still sometimes used to organize the Mycobacteria into categories. The most common clinical manifestation of NTM disease is lung disease, but lymphatic, skin/soft tissue, and disseminated diseases are also important. Pulmonary disease caused by NTM is most often seen in postmenopausal women and patients with underlying lung disease such as cystic fibrosis (CF), bronchiectasis, and prior tuberculosis. It is not uncommon for alpha 1-antitrypsin deficiency, Marfan syndrome, or primary ciliary dyskinesia patients to have pulmonary NTM colonization and/or infection. Pulmonary NTM can also be found in individuals with AIDS and malignant disease. It can be caused by many NTM species which depends on region, but most frequently MAC and M. kansasii. Clinical symptoms vary in scope and intensity, but commonly include chronic cough, often with purulent sputum. Hemoptysis may also be present. Systemic symptoms include malaise, fatigue, and weight loss in advanced stages of disease. The diagnosis of NTM pulmonary infection requires the presence of symptoms, radiologic abnormalities, and microbiologic cultures. In this book, we give an overview of the taxonomy and identification of NTM. Then, the susceptibility of these species are discussed. Additionally to clinical symptoms and radiological patterns, the geographical distribution of NTM are presented. The authors hope that by going through the chapters of this book, clinicians and researchers will give more attention to NTM.
xiv Preface

Although one should keep in mind that NTM study needs intellectual trends, funds, and governmental support for high tech-laboratories to detect and report NTM infection within suspected cases.

Ali Akbar-Velayati and Parissa Farnia
Mycobacteriology Research Centre (MRC). National Research Institute of Tuberculosis and Lung Disease (NRITLD). Shahid Beheshti University of Medical Sciences. Tehran, Iran.

REFERENCE